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ABSTRACT

Structured light is the process of projecting depth-encoding features onto a surface and

using a camera to build a 3D model of the surface. As 3D scanners make their way into

more consumer electronics, the ability to quickly acquire 3D models has become more im-

portant. While 3D scanning has traditionally been either a slow process to acquire a high

definition model or an inaccurate process to quickly grab a large model, we propose a novel

implementation that concerns itself with accelerating the acquisition of 3D point clouds by

pruning the search space to only objects that have moved since the last frame. By alter-

nating between projecting a one-shot depth encoding pattern and white light, we can use

the generate a motion mask using the white light frame and make the assumption that

points not in motion can keep their previously decoded position. New locations will only

be searched and computed for points that reside within the motion mask. This work is

showcased and profiled in a software implementation running on a CPU as well as a CUDA

implementation running on a GPU. This work shows significant improvements upon tradi-

tional structured light implementations for scenes with a moderate amount of motion in the

camera field of view for many different classifications of motion, though these improvements

are subject to diminishing returns as parallelization increases.
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CHAPTER 1. INTRODUCTION

Structured light is one method of acquiring digital 3D models from real-world objects

by projecting identifiable features onto a surface, using a digital camera to capture the

where those features fell on the surface, searching for those features, and then extracting

3D information from the locations of the features. Branching some of the earliest work into

structured light by Posdamer and Altschuler in 1981 [3], structured light has made its way

into more and more consumer products in the form of the Microsoft Kinect in 2010, Google’s

Project Tango in 2014, and recently Apple’s iPhone X in 2017 in the form of FaceID. With

this proliferation of surface reconstruction technology, there is a need for higher resolution

models to be generated at faster speeds.

Using structured light to acquire 3D models is useful for many different applications. As

3D printers become more affordable, there’s a larger demand for online libraries of objects

that people can create. Traditionally these models are created by experienced artists in 3D

modelling software, though 3D scanners using structured light have allowed a larger number

people to contribute to this library of things. These objects can also be imported into 3D

engines to be used in virtual and augmented reality applications. Structured light is also

used in industrial automation for quality control by scanning objects as they come off the

assembly line to check for abnormalities. In the future, a fast structured light module could

run on consumer-level devices to facilitate 3D video chat for not just faces but arbitrary

objects in the scene as well.

In this work, we introduce a structured light system based on de Bruijn sequences which

encodes codewords using neighborhoods of colored parallel vertical lines while also using
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motion detection to reduce the number of patterns that need to be decoded at each cycle

thereby accelerating the entire process. We accomplish this by alternating projecting the

colored parallel line pattern and white light at 60 Hz. In the pattern frames, we search along

epipolar lines in the camera view in order to find the desired codeword and triangulate its

3D location. In the white-light illuminated frames, we use a background subtractor to detect

motion in the camera view and limit the codeword identification stage to only the pixels

that have moved since the previous frame. If motion is detected at the last known location

of a point, we attempt to search for its new position in the motion mask. We assume that

if motion was not detected at the last known position, then we can keep the last decoded

position for that point and save processing time. In the event that we incorrectly decode a

point, we attempt to identify it using a radius outlier removal search that uses fixed-radius

nearest neighbor search to ensure that a point is surrounded by enough other points to not

make it an outlier. If it isolated, we remove it from the point cloud and force a search of

that point’s epipolar line for the next cycle so that we can attempt to find its proper place

again. This step is important to this system because without it, misidentifications would

propagate forward without having a chance to correct them.

This structured light system is implemented in C++ and CUDA (with the OpenCV

library helping with some of the functionality). The inputs of to the algorithm are computer

generated, though the system could easily be modified to support a real-world camera and

projector. The evaluation shows that the use of motion analysis in structured light surface

reconstruction can accelerate the process on a single-core CPU and a multi-core CPU,

though not necessarily on a massively-parallel device such as a GPU. These improvements

scale up as the amount of motion present in the frame goes down. We also show that while

the inclusion of outlier removal is a large bottleneck in our implementation, many of the

problems it solves are present in implementations without motion analysis and it is a good

addition to the system regardless of whether motion analysis is used.

The rest of this thesis is organized as follows. Chapter 2 describes the mathematical
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theory behind structured light and related algorithms as well as mixture-of-gaussian back-

ground subtractors which are used for motion detection. Chapter 3 covers related work

to this thesis such as other structured light systems and how that work guided this thesis.

Chapter 4 describes our contributions to the structured light problem and outlines the sys-

tem that I will be evaluating. Chapter 5 covers the evaluation methodology so that our work

can be compared to existing solutions. Chapter 6 contains the results of that evaluation.

Chapter 7 discusses future work that can be done to improve the algorithm and concludes

this thesis.
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CHAPTER 2. BACKGROUND

2.1 Structured Light

A structured light setup can be generalized as any system that uses one device to

project light patterns that encode depth information and uses another device to detect the

projected pattern to reconstruct a surface map. The patterns used to encode the depth

of the surface can take many forms such as time-multiplexed patterns where sequences of

patterns are projected over time (Figure 2.1a), patterns of colored lines generated with de

Bruijn sequences (Figure 2.1b), patterns based on special types of matrices called m-arrays

(Figure 2.1c), and more. These classifications are discussed further in 3 and work is still

being done on better encoding schemes to this day. Structured light systems can also use

infrared light in place of visible light. The main requirement is that the sensor can detect

the light bouncing off the desired surface.

The advantage of structured light over other algorithms for surface reconstruction, such

as traditional stereo vision which uses two cameras, is that it doesn’t rely on the scene

to have detailed features to find identical points in each field of view to calculate distance.

These systems rely on these features to build disparity maps (or differences between the two

fields of view). Instead, the projection system forces identifiable features onto the surface

so that they only need to be identified in the camera’s field of view as they are already

known in the projector’s field of view. Figure 2.2a depicts a traditional structured light

configuration while Figure 2.2b depicts one for stereo vision.
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(a) A time-multiplexed pattern used in [3]
(b) A de Bruijn sequence-based pattern en-
coded as colored lines used in this work

(c) An m-array-based pattern used in [4]

Figure 2.1: Various structured light encoding patterns

2.1.1 Multiple View Geometry

To reconstruct a 3D surface from a 2D camera view, we need to understand the math-

ematics of projections and camera imaging from not only a single camera, but from a

multi-camera system. The same mathematical techniques can then be extrapolated to a

camera-projector system which can be used for structured light by treating the projector

as though it were a camera with a constant view.
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(a) A camera and projector focusing on a sub-
ject in a structured light system

(b) Two cameras focusing on a subject in a
stereo vision system

Figure 2.2: Typical surface reconstruction configurations

2.1.1.1 The Camera Matrix

Mutliple view geometry assumes that the images being processed follow the general

projective camera model where a pixel on the image can be thought of as a ray starting at

the projection center of the camera, moving outwards through the image plane at distance

f (the focal length of the lens), and intersecting with real world objects that will then be

captured in the image. This thesis specifically utilizes the pinhole camera model where all

light hitting the image sensor passes through the center of the lens (Figure 2.3). Any point

(x, y, z)T in R3 (three-dimensional coordinate space) can be mapped to (f ∗ x/z, f ∗ y/z)T

in R2 (two-dimensional coordinate space) using the general projective camera model.

Homogeneous coordinates are often used in camera models to represent the fact that

any point along a ray emanating from the camera center through the image plane projects

onto the same coordinate of the image plane. By introducing an additional number k into

the tuple and transforming (x, y)T to (kx, ky, k)T , we can distinguish between points in

the projection space that map to the same coordinates. Using homogeneous coordinates,

the mapping from R3 to R2 is (x, y, , 1)T 7→ (f ∗ x, f ∗ y, z)T . This mapping can be per-
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Figure 2.3: Pinhole model presented in [1]

formed by multiplying the 3x4 camera matrix P with the 3D homogeneous coordinate with

Equation 2.1.
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(2.1)

2.1.1.2 Camera Calibration

In physical cameras, we need a 3x3 calibration matrix K in order to account for real-

world differences. This matrix contains the focal length in the x and y directions in terms

of pixels (ax and ay, respectively), the principal point (center) in the x and y directions

(x0 and y0, respectively), and a skew parameter s which is normally 0 unless the x and y

directions are not perpendicular. This matrix is constructed as

K =


ax 0 x0

0 ay y0

0 0 1

 (2.2)

Given a calibration matrix K, a rotation matrix R, the identity matrix I, and the cam-

era’s location C̃, we can represent the real-world camera matrix P as
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P = KR[I| − C̃] (2.3)

Figure 2.4 demonstrates the common types of radial distortions such as barrel (top) and

pincushion (bottom) distortion introduced by lenses. These can be corrected for as well in

order to transform the image back to the required rectilinear/Euclidean space.

Figure 2.4: Barrel (top) and Pincushion (bottom) Distortion Correction

The correction is applied with the equations

x̂ = xc + L (r) (x− xc) ŷ = yc + L (r) (y − yc) (2.4)

L (r) = 1 +

N∑
i=1

κir
i (2.5)

where (x̂, ŷ) are the new, corrected coordinates, (x, y) are the old, distorted coordinates,

are the center of the distortion, r is the distance from (x, y) to (xc, yc), and κi is a sequence

of values computed by the camera calibration procedure. The exact values of κ are normally
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calculated with a checkerboard pattern similar to Figure 2.5. In this thesis, due to the use

of computer-generated images, this distortion correction does not need to be applied.

Figure 2.5: Checkerboard pattern used in camera calibration

2.1.1.3 Epipolar Geometry

Regardless of the method of finding correspondences between two fields of view, the

same math is used to reconstruct 3D surfaces from 2D images. The underlying field of

mathematics to do this is called epipolar geometry. If you know the specifications of the

cameras/views (their intrinsic parameters), the relative pose (translation and rotation) be-

tween the cameras (their extrinsic parameters), and can identify identical points in both

images (correspondence), you can triangulate the point in 3D space and reconstruct the

surface.

For any point X in R3 and its corresponding projection in R2 onto the two views (x in

the first view and x′ in the second view), there exists a plane π that contains the spatial

point X, the two image points x and x′, and the centers of each view C and C ′. Figure 2.6

illustrates this point. Supposing we only know the location of x in the first view, we can

limit the search in the second view to only the line represented by the intersection of π and
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the second view’s image plane. The intersection of each view’s center with each view’s image

plane is called the epipole. This limitation is called the epipolar constraint and such a line

is called an epipolar line. Several epipolar lines in two views can be seen in Figure 2.7 The

introduction of these concepts can significantly reduce the amount of searching required to

find correspondence between two views.

Figure 2.6: Point correspondence visualization from [1]

Figure 2.7: Epipolar lines visualization from [1]

Without epipolar lines, computation of correspondences between two views would be

much slower and would present many more ambiguities. The epipolar constraint does

not rule ambiguity out, especially in traditional stereo vision, though a carefully selected

structured light pattern can significantly reduce ambiguity of correspondence.
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2.1.1.4 The Fundamental Matrix

Once both cameras (or camera and projector, in the case of structured light) have camera

matrices, we use something called the fundamental matrix to generate epipolar lines and

determine how to map points in one field of view (e.g. a projector) to another field of view

(e.g. a camera). Given a point in the second view x′ and the corresponding epipolar line l′

passing through x′, and an epipole e′, the epipolar line can be written as

l′ = [e′]xx
′ = [e′]xHπx = Fx (2.6)

where [e′]x is the skew-symmetric matrix of e′ (Equation 2.7) and Hπ is the transforma-

tion mapping each x to x′.

[a]x =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 (2.7)

With the mapping of a point x to an epipolar line l′ and how it relates to F now

discussed, we can state the following mapping from x to x′ using F as

x′TFx = 0 (2.8)

If x and x′ project to the same point in the two views, then x′ lies on the epipolar line l′ =

Fx and, algebraically, 0 = x′T l′ = x′TFx. The mapping from x to x′ is shown in Figure 2.8.

In addition to giving us faster a way to search for correspondences in other views, this

relation also allows us to generate the fundamental matrix using only point correspondences.

See [1] for the more information regarding the estimation of the fundamental matrix as we

will be using another tool to calculate it, the essential matrix, for this thesis.
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Figure 2.8: View transformation visualization using F from [1]

2.1.1.5 The Essential Matrix

The essential matrix is a special case of the fundamental matrix where we know the

exact intrinsic and extrinsic parameters of the camera system. While the fundamental

matrix is in terms of pixel coordinates, the essential matrix is in terms of normalized image

coordinates. If a camera matrix P is equal to K[R|t] and a point in three dimensional space

is X, then that point projected onto its image plane is equal to PX. For any given x, can

calculate the normalized coordinate x̂:

x̂ = K−1x = [R | t]X (2.9)

A camera matrix that has been multiplied by its inverse calibration matrix is called a

normalized camera matrix and can be represented as simply [R|t]. For a pair of normalized

camera matrices P = [I|0] and P ′ = [R|t], the fundamental matrix that links the two is

E = [t]xR = R
[
RT t

]
x

(2.10)

which is called the essential matrix. Like the fundamental matrix, we can map points

from one view to the other using it, provided that we use normalized coordinates.
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x̂′TEx̂ = 0 (2.11)

Comparing Equation 2.9 for relating x and x′ using the essential matrix with the Equa-

tion 2.11 for relating x and x′ using the fundamental matrix, we can relate the essential

and fundamental matrices with the calibration matrix K with

E = K ′TFK (2.12)

Because the input data into our system is computer generated, we can skip the generation

of F using correspondences with may not be precise and get an exact computation by

calculating the essential matrix from the translation and rotation of the two views and

using the calibration matrix to generate F .

2.1.1.6 Triangulation

Figure 2.9: Triangulation visualization from [1]

When a correspondence is found between two points in two different views, it is possible

to triangulate the points to determine the location of the correspondence in three dimen-

sions. The most common solution is using ray projection and using least squares to find the

nearest point that the rays cross and finding the midpoint between them. This technique
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is shown in Figure 2.9. The only points that cannot be triangulated in this way are points

that lie on the epipoles of the image planes as the rays propagating outwards from the views

intersect in multiple points. This is avoidable if the epipoles of the system are outside of

the field of view of each camera/projector.

2.1.2 Identifying Codewords

Structured light relies on the ability to match points of the projected image to points on

the camera. In early structured light systems, codewords were sequences of white and black

bars that represented bit encodings for codewords. If a pixel was black, then white, then

black, its code was 0102. Generically, for a sequence of m images, 2m possible codewords

existed. By identifying a codeword in an image, this method uniquely identifies the location

of this feature in the projected image in the dimension perpendicular to the lines. Provided

that the camera and projector are not aligned in the same axis as the lines, this method

could use the epipolar line that crosses that location in the camera’s field of view to identify

the feature in the dimension parallel to the lines. Further advancements in position encoding

beyond black and white lines will be discussed in Chapter 3 and our specific implementation

is discussed in Chapter 4.

One challenge with structured light is how to deal with incorrect decoding of codewords.

If lighting conditions aren’t just right, the algorithm may perceive one codeword as another.

There are solutions for decreasing the probability of incorrect decoding by accounting for

lighting abnormalities, but it is also important to ensure that when errors do occur, they

can, first, be detected, and then, corrected. In [5], Richard Hamming provides an answer

in the form of Hamming distance. The Hamming distance of two keywords is the minimum

number of symbols that can be substituted to make one identical to the other. For example,

the codewords 1002 and 1112 have a Hamming distance of 2 because we would need to change

the last two symbols from 0 to 1 in the first codeword in order for it to be misidentified as

the second one; there is no shorter way to change from the first symbol to the second or
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vice versa. This is visually represented by the binary cube in Figure 2.10.

Figure 2.10: A visual representation of Hamming distance

An encoding with a minimum Hamming distance of d across all codewords means that

any codeword is differentiated by at least d symbols from any other keyword in the encoding.

An encoding is said to be k-errors detecting if the minimum Hamming distance of the

encoding is at least k + 1, though this is not sufficient for correcting the error. In order

for an encoding to be k-errors correcting, the minimum Hamming distance between the

codewords must be at least 2k+ 1. Our earlier example in Figure 2.10 can detect one error,

but cannot correct the error. If we replaced 1002 with 0002 however, the encoding could

then detect up to two errors and correct for one.

2.1.3 de Bruijn Sequences

Early in structured light, the encoding methods used required sequences of images to

be projected onto the surface, however many methods exist for encoding codewords onto

a surface from a single image. This is sometimes referred to as one-shot encoding and can

come in the form of hieroglyphs, grid patterns, colored lines, and more. This paper concerns

itself in particular with colored line encodings created using de Bruijn sequences. An n-

order de Bruijn sequence with an alphabet of size k is a cyclic, pseudo-random sequence

that contains every possible sequence of length n in the alphabet of symbols. By identifying
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n symbols in a row (or colors, in this case), a unique codeword can be formed and thus the

position can be identified. As shown in Figure 2.11, codewords share encoding information

by sharing colored lines between themselves. For example, the codeword n (Violet, Cyan,

Orange) could then give way to codeword n + 1 (Cyan, Orange, Violet) with Cyan and

Orange being shared between the two codewords. This can be helpful in determining a

codeword even when the algorithm can’t quite decode a line but it knows which lines were

before and after it. Smaller orders of de Bruijn sequences are easier to identify due to the

shorter codewords, but to achieve high resolution scans a large alphabet must be used to

avoid repeating the sequence. Larger alphabets lead to a higher probability of an incorrectly

decoded codeword. Using larger ordered de Bruijn sequences can decrease the alphabet size

while keeping the same resolution. Alternatively, by ignoring select codewords instead of

decreasing the alphabet size when the order is increased, the minimum Hamming distance

of the encoding can be increased above 1 which increases the correctability of the encoding.

Figure 2.11: Overlapping Lines in a de Bruijn sequence
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2.2 Other Computer Vision Algorithms

To accomplish the additions presented in this work, we need to utilize a few other

computer vision algorithms outside of the basic matrix operations described in the previous

section.

2.2.1 Background Subtraction

Background subtraction is a technique in computer vision for separating an image’s

foreground from its background provided that the camera is not moving. While many

applications of background subtraction are for replacing the background with another scene,

it can also be used to detect moving objects on a static background. Implementations of

background subtraction can range from a simple difference of pixels from one frame to the

next, comparing each pixel value to their historical mean average, and building combinations

of gaussian models representing possible values for each pixel. This paper uses the latter of

these implementations (referred to as Mixture of Gaussians, or MoG).

In MoG background subtraction, a model is trained on a sequence of images with a

certain learning rate so that it might determine the mean values for each pixel and the

associated variances as to be resilient to noise. If multi-modal distributions arise, a MoG

background subtractor can add new gaussian distributions to the model that are outside of

the current model if they persist for long enough to be determined as part of the background.

The amount of time that this takes is determined by the learning rate.

Using gaussian distributions in background subtractors was introduced by [6] which can

account for camera noise and other sources of pixel variation. However, swaying objects

in the view like trees need multiple gaussian distributions per pixel to account for these

more abstract variations. The mixture of gaussian model was introduced in [7] and many

subsequent updates to the idea since then have been related to faster training methods for

the model (as in [8, 9, 10]) or finding a better way to determine the ideal number of modes

in the model (as in [11]). Specifically, the work of Zivkovic and van der Heijden in [11, 12] is
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related to picking the proper number of modes for each pixel in an online algorithm so that

it can efficiently adapt to the scene. Figure 2.12 depicts what a mixture-of-gaussian model

looks like for a single pixel in Zivkovic and van der Heijden’s works in the RGB color space

with modes around (60, 145, 90) with a weight of 0.7 and (215, 45, 165) with a weight of

0.3.

Figure 2.12: An RGB mixture-of-gaussian model with two modes

There are several parameters that must be tuned in a MoG background subtractor, with

the first three being the most important:

• Learning Rate: The rate at which new modes are added to the model (this can vary

over execution time)

• Variance Threshold: The threshold for which pixels will be counted as either back-

ground (described well by the model) or foreground (not described well by the model)

• Maximum Number of Mixtures: The maximum number of gaussian distributions that

we will allow in the model (sometimes a memory constraint, sometimes a logical

constraint)
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• Background Ratio: The threshold for when a component becomes significant enough

to be added to the model as its own mode

• Generation Threshold: The threshold that determines how far another value must be

to generate another mode in the model

• Initial Variance: The seeded variance for each new mode

• Minimum Variance: The minimum variance that a mode can achieve

• Maximum Variance: The maximum variance that a mode can achieve

• Complexity Reduction Prior: The number of samples needed to have confidence that

a mode actually exists

This method of background subtraction can also be used to identify shadows in an

image, though that feature is not utilized in this thesis. The specific mathematics behind

MoG background subtractors can be found in [11, 12].

2.2.2 Morphology

Dilation is a basic morphological operation on a binary image where activated pixels are

expanded by a predetermined shape (called a structuring element) [13]. For any arbitrary

binary image A and a structuring element B, the formal definition is

A⊕B =
⋃
b∈B

Ab (2.13)

Dilation can be accomplished by taking the anchor of the structuring element (usually

the center) and positioning it at every previously activated pixel in an image and then

activating all pixels that the structuring element now covers, as demonstrated in Figure 2.13.

Dilation is very helpful for filling in small holes of a mask as well as increasing a mask’s size

to cover the entire edge of an object that is being masked.
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Figure 2.13: Dilation of an arbitrary design with a 3x3 cross (inverted)

2.2.3 Nearest Neighbor Search

Nearest neighbor search is the act of finding the closest point to any arbitrary point

in some space. More generally, k-nearest neighbor search finds the k nearest points to

any given point in some space see Figure 2.14. Nearest neighbor search is helpful when

dealing with point clouds to find outliers. This problem becomes increasingly complex as

the dimensionality of the search space increases. Many different algorithms exist for finding

the nearest neighbors to a point and they can be grouped into two major categories: exact

and approximate.

Exact methods generally take longer to find a solution but come with a guarantee that

the solution is correct. The nave method for nearest neighbor search that entails calculating

the distance to every other point in the search space and finding the minimum. Such an

approach has a time complexity of O(dN) where d is the dimensionality of the space and

N is the number of points.

Another exact method is to use space-partitioning and construct a special type of binary

search tree called a k− d tree (where k is the number of points and d is the dimensionality

of the space) linking close points for an average time complexity of O(log(N)). In a k − d

tree, each non-leaf node in the tree lies on a hyperplane (a plane in 3D and a line in 2D)

that divides the remaining space. Each node has a dimensional axis associated with it
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Figure 2.14: A 2D example of 3-nearest neighbor around the black dot

that tells the tree to generate the hyperplane perpendicular to that axis. An example two

dimensional k − d tree is shown in Figure 2.15 in its graph representation and its binary

tree representation.

The canonical approach to building a k − d tree is to cycle through the dimensions

that determine the direction of the hyperplane as one moves down the tree and to insert

points with the median of the points as the tree’s root to better ensure a balanced tree.

Nodes are added to the tree in the same way as any other binary search tree: traverse to

where the node should exist, insert it, and set the previous node at that position as the

child of the new node on the proper side. Removing a node requires either rebuilding the

sub-tree starting at the node removed, or to find a child of the node to be removed, replace

it with such a child, and then recursively remove the replacement node from the sub-tree.

Performing nearest neighbor search on a k − d tree is described in [16].

Approximate methods give plausible, but potentially not perfect, solutions to the nearest

neighbor search problem. In many cases, an approximate solution is good enough and

largely doesn’t affect the quality of a program. A popular technique for this method of

nearest neighbor search is using locality-sensitive hashing, or LSH. LSH uses a hashing
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function that groups points in a similar space into similar buckets. Unlike cryptographic

and checksum hashing functions that are designed to reduce the similarity of nearby inputs,

locality-sensitive hashing by making nearby inputs collide with each other. Sometimes a

family of hash functions are used to work on a wide variety of input data [17].

Performing approximate nearest neighbor search on LSH-binned inputs is as easy as

searching the bin of the input node across the family of hash functions. If multiple hash

functions are used, the bins from each hash function are searched separately. Though in

this thesis we are only interested in LSH as it applies to nearest neighbor search, LSH is

used as a dimensionality-reduction tool in a very wide array of applications such as DNA

analysis [18], reverse image search [19], audio/video identification [20], and more.

2.3 CUDA

CUDA is Nvidia’s parallel computing platform introduced in 2007 as a way for pro-

grammers to more easily write code that can be accelerated on GPUs. This method of

computation is called GPGPU or general-purpose computing on graphics processing units.

In the past 10 years, many improvements have been added to CUDA such as support

for half-precision and quadruple-precision floating point operations, increased maximum

widths of arrays for computation, and increasing the size of data types that can do oper-

ations atomically. Today, CUDA is being applied to training deep neural networks, fluid

dynamics simulations, and, as I apply it in this thesis, computer vision computation.

The CUDA model works by writing CUDA code called a kernel and compiling it with

the nvcc compiler [21, 22]. This kernel can be called from C, C++, and Fortran code using

a series of CUDA API calls. The general sequence of calls is as follows: setting up the

device (GPU), allocating and copying data to the device, running the kernel, then copying

data back to the host. When a kernel is called, the programmer must specify the number

of threads to run in a block and then how many blocks to run. Each thread generally

runs independently of the others (though not always) and each kernel can identify itself
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querying its thread and block index. Using these indices, a thread can determine what part

of memory it should be acting upon and then execute its instructions. Blocks are groupings

of threads and all threads within a block must be running the same kernel.

CUDA comes with many benefits over standard computing including, but not limited

to fast on-board memory operations, higher number of instructions per cycle (even more-

so with half-precision floating point numbers), and fast, parallel libraries for dealing with

linear algebra, sparse matrices, signal processing. However, no technology is without its

downsides. Large amounts of host-to-device or device-to-host memory transfers will signif-

icantly bottleneck any application. Additionally, while branch instructions are allowed in

kernels, performance can suffer if not all of the threads take the same branch.
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Figure 2.15: Visualizations of a k-2 tree built from the set { (2, 3), (5, 4), (9, 6), (4, 7), (8,

1), (7, 2) }
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CHAPTER 3. RELATED WORK

In 2004, Salvi et al. [23] analyzed several implementations of structured light up to

that point and created the following high-level classifications: time multiplexed, spatial

neighborhood, and direct coding. In addition, in 2011 Geng published a tutorial [24] that

covers the basics of structured light that covers many of the popular implementations. This

chapter discusses some advancements in the first two of those classifications over the last

30+ years as well as additions that have been made since [23] that have inspired this work.

3.1 Time Multiplexing

Time multiplexing was the initial foray into structured light, though due to its necessity

to project sequences of patterns onto a surface it is always restricted to static scenes. In

1981, Posdamer and Altschuler [3] projected a temporal sequence of m binary patterns

to encode codewords of length 2m onto a surface. Their setup used a laser reflection

system to draw matrix dots onto a surface. Dark pixels corresponded to the bit 0 and

bright pixels corresponded to the bit 1. By analyzing the camera image and looking at

the pixel values at the same locations for each image, they found that you can read back

the codeword and determine the depth of the pixel. Inokuchi et al. [25] replaced Posdamer

and Altschuler’s incremental binary sequence with Gray codes which give neighboring codes

a Hamming distance of one to reduce the impact of errors (i.e a traditional 2-bit binary

sequence goes 00 → 01 → 10 → 11, but a Gray code sequence goes 00 → 01 → 11 →

10). Mimou et al. [26] increased the number of patterns projected in order to achieve

an encoding with a Hamming distance of three to allow for better error detection and
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error correction. Trobina [27] showed that the location of the lines was crucial to accurate

structured light surface reconstruction and introduced two methods of gaining sub-pixel

accuracy: either by finding the second derivative zero crossings of the image where the lines

go from white to black or by projecting both the positive and negative patterns onto the

surface and comparing the two to find the edges of the stripes. Valkenburg and McIvor [28]

also worked on finding the location of the stripes in their encoding to increase the accuracy

of the system by fitting third degree polynomials to the intensity of 17 x 17 pixel regions

using least squares to find the crossings. They also attempted this with sinusoidal waves

which improved the results further. Skocaj and Leonardis [29] tackled the difficult task

of scanning scenes with varying reflective properties. By projecting patterns at different

light intensities, they built a radiance map of the scene and can determine which parts

need different amounts of illumination to be properly decoded later. They found that while

the minimum number of illumination intensities could be as low as two in a scene with

varying reflective properties, though increasing that number led to much better results.

Caspi et al. [30] worked on expanding Gray codes to multiple colors instead of just white

and black. This addition reduced the number of patterns that needed to be projected but

still came with the Hamming distance of 1 that traditional binary Gray codes had. Recently,

Young et al. [31] used not multiple patterns, but multiple camera positions to encode time

multiplexed data onto a scene. By moving the location of the camera and comparing the

values along the epipolar lines, they found that they could achieve the same results as other

time multiplexing schemes but while also handling the occlusion of subject features.

3.2 Spatial Neighborhood

Two major methods of encoding codewords in single frame patterns are using de Bruijn

sequences (as this work will do) and using M-arrays. Work has progressed on each in parallel

in the past years, though there is some cross-over when de Bruijn sequences are used to

generate M-arrays.
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3.2.1 Patterns based on de Bruijn Sequences

Hugli and Maitre [32] based their work a previous paper by Boyer and Kak [33] which

also projected colored, horizontal lines, but they encoding pattern with de Bruijn sequences.

However, while Boyer and Kak’s system separated the colored lines with black lines, Hugli

and Maitre did not which meant that they could not project the same color consecutively

and thus could not achieve the maximum size that their color alphabet would generally

allow. Monks and Carter [34] used a similar sequence, though added the black lines back in

and used the HSV color space with a six color alphabet which gave them access to a larger

list of codewords. Vuylsteke and Oosterlinck [35] introduced a binary coded pattern similar

to a checkerboard that is based on de Bruijn sequences. Salvi et al. 1998 [36] combined

vertical and horizontal lines. The intersections of the grid were the points to be tracked,

and neighbors could easily be found just by tracing the lines. Three colors were used for

the vertical lines and three for the horizontal. Zhang et al. 2002 [37] used vertical colored

lines in a de Bruijn sequence with no adjacent repeating colors, but slid the pattern like a

time-multiplexed system to account for lighting differences. Zhang et al. improved upon

this method in 2003 [38] by adding support for moving and deforming objects. Ulusoy et

al. [39] took the concept of grid based detection similar to [Salvi et al. 1998] but instead of

relying on particular colors to encode the de Bruijn sequences, they encoded the sequence

using the spacing of the lines and thus only uses two colors.

3.2.2 Patterns based on M-arrays

A perfect map is a matrix of size r x v where every submatrix of size n x m appears

exactly once. Within a perfect map, if you know the elements within a window, you can

uniquely determine your location within the larger matrix. If your perfect map is created

with elements of an alphabet of size k, it is considered an M-array if and only if it contains

all possible submatrices of size n x m except for the submatrix of all 0s. With these

properties, M-arrays provide similar advantageous properties to de Bruijn sequences but in
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two dimensions.

The use of binary M-arrays in structured light was proposed by Morita et al. in 1988

[40]. Their system projected dots that represented points that were going to be tracked so

that the camera could find them and then projected the actual M-array representation of

the encoding. Because of the two images that needed to be projected, it was limited to static

scenes. Griffin et al. [4] used perfect submaps (perfect maps where not all possible windows

appear) where each symbol could be identified by itself and its four-connected neighbors.

Their encoding was generated using de Bruijn sequences. They also experimented with

using colors to represent the alphabet as well as unique symbols, the latter of which proved

more robust to colored surfaces. Morano et al. [41] also used perfect submaps but increased

the Hamming distance of the encoding in order to allow for error correction. They also

noted that any M-array based system using N colors can be converted into a binary, time

multiplexed M-array system with log2(N) + 1 patterns.

3.3 Multiple Cameras and Multiple Projectors

In recent years, there has been research into using multiple cameras and projectors in

order to capture a full 360-degree subject using structured light. Furukawa et al. [42] used

six cameras and six projectors in order to fully scan the subject. Each projector projects a

set of parallel lines of a unique color set in order for each camera to differentiate between

them. In 2011, Furukawa et al. [43] improve this method and scans a human body in action.

3.4 Miscellaneous Related Works

Fechteler and Eisert [44] used k-means clustering to group similarly colored pixels to-

gether to decode the sequence instead of thresholding certain colors as many other works

do. This allows for this algorithm to work without being in a dark environment as only

eight unique groupings need to exist in the clustering. This work also projects a white light

image onto the subject that can be used after reconstruction to map a texture to the mesh.
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Zhang et al. [45] used motion detection to switch between time multiplexing (TM) and

spatial neighborhood (SN) schemes in order to achieve the high accuracy of time multiplexed

reconstruction and low latency of spatial neighborhood reconstruction all in one system.

They supported globally changing from TM to SN if motion was detection as well as only

changing a region of interest to SN if motion was only detected in that region.
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CHAPTER 4. THE ALGORITHM

The goal of the algorithm described in this part of the paper is to reconstruct 3D surfaces

while also answering the following questions:

• Do we need to re-detect features that haven’t moved?

• Where do we search for points that have moved?

• How do we detect motion?

• How do we decode the depth of moving objects?

• How do we stop incorrect decoding from propagating forward?

By combining background subtractor and a modified structured light system, this al-

gorithm accelerates surface reconstruction by limiting the search of new points to the part

of the frame that has moved and by not searching for points that haven’t moved. The

algorithm is implemented as a pipeline of data and a flowchart is provided in Figure 4.1.

The rest of the chapter describes the algorithm and its components in more detail.

4.1 Frame Acquisition

Instead of just projecting a pattern onto a surface like a standard one-shot structured

light implementation, this system alternates between projecting the pattern (Figure 4.2a)

and white light (Figure 4.2b). A colorized de Bruijn sequence of order 3 and with 8 symbols,

culminating in 512 unique codewords, was chosen as the encoding pattern. Each stripe is
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Figure 4.1: Algorithm Progression

separated in the encoding pattern by 4 pixels so we need at least 480 codewords in our pat-

tern. The 3-8 de Bruijn sequence was chosen because it provides a good balance between

number of symbols in the alphabet and only a few lines are needed to fully decode the

codeword. Other alternatives were a 2-22 sequence which has too many symbols to be ro-

bustly decoded despite only needing two lines to work and a 4-5 sequence which only drops

the alphabet size by 3 but requires an additional line to decode the codeword which could

lead to more incorrect decodings. More complex encoding patterns with higher minimum

Hamming distances are more robust, though the purpose of this work is to highlight the

potential speed improvements of adding motion analysis to structured light, so a simple en-

coding scheme was chosen. While time multiplexed encoding schemes are even simpler, this

system is designed to support moving objects which are not supported by time multiplexed

encodings. The projected pattern is 1920x1440 and contains striped lines every four pixels

with black space in between. We track a point in the encoding pattern at every 4 pixels in

the vertical and horizontal directions and each one has its own unique epipolar line. The de

Bruijn alphabet was color coded according to the HSV color space (the reasoning for which

is explained in section 4.4 of this thesis). The white light frame is projected to illuminate

the surface in order to get a clear picture of what is in view. This image is sent along to

the motion analysis part of the algorithm to determine what parts of the image have moved

since the previous white light frame was last captured. As will be discussed in Chapter 7,
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including this frame in the system opens the door for even more features beyond motion

analysis.

(a) Pattern Projection (b) White Light Projection

Figure 4.2: Images captured from the alternating projections in this system

4.2 RGB to HSV Conversion

HSV, or hue, saturation, and value, is an alternative color space to RGB. It stores the

entirety of the color in the hue space as a degree on a circle, the saturation of that color

from neutral all the way up to its full vibrance, and its value as a key from black all the way

up to full brightness. It is common in computer vision algorithms to use HSV to parse color

information instead of RGB when looking for objects of a certain color range. Figure 4.3

visually represents the RGB and HSV color spaces and shows why it is easier to discern

different colors as well as dark pixels in the latter.

Converting from RGB to HSV is an operation that requires several branches and com-

puting on individual values which we always try to avoid when computing on GPUs. Unfor-

tunately, there is not a good way to avoid this during this conversion operation so we must

incur the penalty when computing the HSV image on the GPU. Converting our pattern im-

age from RGB (Figure 4.4a) to HSV (Figure 4.4b) allows us to parse our encoding scheme

more easily. Because our decoding only needs the hue and value planes, we can remove the
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(a) RGB Color Space by [46] (b) HSV Color Space by [47]

Figure 4.3: Visualization of the color spaces used in this system

saturation plane only copy the other two planes when running this stage. The multi-core

CPU implementation divides work in this operation by rows while the GPU divides work

by pixels.

(a) Pattern Projection (b) Hue Channel

Figure 4.4: An RGB frame and its corresponding Hue channel

4.3 Motion Analysis

Motion analysis is a helpful tool for determining if anything in your view isn’t where it

was in the previous frame and, if using an algorithm like optical flow, determining where it

is in the current frame. In this thesis, we only care that an object has moved, not where it
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has moved to, so we use a gaussian background subtractor (MoG with only a single mode)

to determine motion.

Motion analysis is run on our white light-illuminated frame because it provides the best

picture of what our subject looks like at any time. We do not run motion detection on

the pattern image because much of the subject is not illuminated due to the black lines in

between the de Bruijn lines. Motion in that space will not be detected because it is not

illuminated.

This background subtractor only uses the previous frame to determine if the new pixel

is within the same gaussian curve because we want to know immediately if we need to

search for a new point at that location. A longer history/slow training rate could be added

if having the most up to date lines was not a concern to the user. We also use a variance

threshold of 0.5 to detect noticeable but not minute changes to the subject, though for a

very noisy camera or scanning environment this may need to be increased. Because the

MoG background subtractor is a per pixel mode, it may be unwise to add more gaussian

modes even if the location of the codeword was stored along with the gaussian information

to allow for recall at a later match as similar looking pixels that are temporally distant may

not refer to the same depth. All other parameters in the background subtractor were left

to their OpenCV defaults [48]. The input image and the output motion mask are shown in

Figures 4.5a and 4.5b. Like the previous stage, the multi-core CPU implementation divides

work in this operation by rows while the GPU divides work by pixels.

Because the background subtraction as a motion detector is not perfect, we need to

clean up the mask slightly as well as account for any minor movement near the edge of the

subject that was not captured in the mask. To do this, we dilate the mask with a 11x11

cross two times that fills in the holes in our mask as well as increases our potential search

space for new codewords. Without this expansion, we may not be able to get a large enough

window to see the entirety of the codeword in the next pattern frame. The dilated motion

mask and our new search space for codewords is shown in Figure 4.5c.
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(a) White Light Projection (b) Motion Mask

(c) Dilated Motion Mask

Figure 4.5: Various structured light encoding patterns

4.4 Color Identification

The choice was made to separate the colors representing the alphabet in the de Bruijn

sequence by hue. As discussed earlier, the HSV color space makes it much easier to quickly

discern color than the RGB color space and also makes it easy to detect the dark lines

separating the colored lines. Separating the colors in the Lab color space was also considered

which is sometimes used in data visualizations to increase the discernibility for human

readers, but this carries little benefit for computer systems.

For each pixel in the motion mask generated by the motion detection stage, we attempt

to identify the color encoded at that pixel. In the first cycle, this operation is done on all

pixels. In subsequent cycles, by only identifying colors of pixels that contain motion, there
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should be a direction relationship between the amount of motion in the frame and the speed

of this stage. Figure 4.6 illustrates the decoding method: we add 11 to the hue, mod by

256, and divide by 22.5 in order to categorize it into one of the 8 components that represent

our de Bruijn alphabet. This assumes that the hue is stored as a number in [0, 179). While

this is half of the normal range of hue in [0, 360), it is necessary to fit the hue within one

byte. This operation has the effect of rounding all hues to their nearest component without

the need for branch statements. If the value part of the pixel in the HSV color space is

less than 70, it is not put into one of the de Bruijn bins and is instead categorized as a

black pixel with a code of 255. Black pixels can either be one of the black lines in between

our colored lines or an occlusion from the subject blocking light from falling elsewhere on

itself. In either case, we don’t want to make any false guesses about what the color could

be that might negatively affect decoding in the next stage. Once again, the multi-core

CPU implementation divides work in this operation by rows while the GPU divides work

by pixels.

Figure 4.6: de Bruijn Sequence Color Decoding Scheme
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4.5 Codeword Identification

Once the colors have been identified, we have everything we need to start identifying

codewords in the frame. For each codeword, we start by examining the pixel location of that

it was previously identified at in the motion mask (provided that we have a valid known

location for the pixel already). If no motion was detected, we skip codeword identification

and put the 3D location from the previous cycle into our point cloud. The rationale is that

if the pixel values were close enough to not register as motion, our codeword identification

would probably have provided the same (or at least a very similar) result. Note that because

the first frame’s motion mask is all white, this is valid on the first run through this stage

as well.

In the event that motion was detected at that keyword’s previous location or we don’t

have a previous location stored for the codeword, we enter the process of decoding image

to find the codeword’s pattern. We utilize the motion mask in this step as well by skipping

pixels in our search space that don’t contain motion. In the case where a known codeword

has moved, the codeword must reside in the motion mask if it still exists in the frame at

all as the motion mask covers the previous and new locations of moving pixels. In the case

where a previous location for the codeword was not known, the non-moving points don’t

need to be searched because we have already searched that space in previous frames and

were unable to find the point and nothing is gained by searching the space again.

Recall that every codeword has an epipolar line associated with it due to our camera

system being calibrated, so our search space for the codeword is the group of pixels that fall

on the epipolar line associated with the codeword. Our process for finding the codeword

consists of searching along the epipolar line from left to right and reading the decoded pixel

values. For every non-255 and non-consecutive value that we read, we store its color and

location in a FIFO buffer that we can match against our codeword that we’re searching for.

When we read 255, we clear the non-consecutive restriction as that means we’ve identified a

black bar separating colors. If we read eight 255s in a row, then there’s too much of a spatial
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gap to rely on the previous color identifications in our FIFO to give a reliable decoding,

so the FIFO is cleared. After each addition to the FIFO, we compare its contents against

the codeword that we’re searching for to see if we get a match. Our de Bruijn sequence

has order 3, so we can identify any three neighboring lines containing our target line to

uniquely identify the codeword in the frame. Figure 4.7 illustrates that for a codeword

in our encoding pattern, we can identify the two lines leading up to the target, the two

lines surrounding the target, or the two lines following the target and be able to decode

it successfully. In each case, we store the location of the target line and discontinue the

search. If none of the cases match, we continue searching along the line to find a match.

Generically, for a de Bruijn sequence of order n, there are 2n−1 different windows that can

be used to identify a codeword, though as n increases, the less resilient the pattern is to

discontinuities in the subject due to the larger number of lines needed for identification. In

both the multi-core CPU implementation and the GPU implementation of this stage, every

epipolar line gets a thread.

Figure 4.7: Acceptable Codeword Identification Sequences

If the codeword is found, we record its location and mark it as needing triangulation for
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the next stage. If the codeword is not found, then it is either not present in the image or

occluded by the subject’s geometry. In this case, if we have stored a previous location for

it we need to remove it from the point cloud so that it’s no longer rendered and clear its

stored codeword location so that we don’t use that information to make assumptions about

its movement or lack thereof in the future.

4.6 Triangulation

In this work, we use a close approximation heuristic of least squares triangulation (due

to issues getting OpenCV’s triangulation library to work) described in section 2.1.1.6 and

[1] to find 3D positions of our 2D codeword locations. Using the result of the previous

stage, we trace a ray out of the camera’s center to codeword’s location and also trace a ray

out from the projector’s center to where it projected that codeword and find the midpoint

between the closest intersection of the two rays. We avoid the case where this is insolvable

by the points overlapping the epipoles by ensuring that the two devices are not pointed

towards each other.

We do this operation for any new points that were detected or any points were already

known to exist but have moved. We do not triangulate for any points that were skipped or

not found in the identification step. In the case where every point in the frame has moved,

we do not incur any extra work that we would not have had to do otherwise in another

structured light system. However, the less motion that is present in the view, the more time

we save by not computing the location. In the edge case where no motion is present from

one frame to the next, no calculations are needed in this step.

4.7 Radius Outlier Removal

When building a point cloud with structured light, particularly those methods that don’t

have high error correctability, it is possible to misidentify a codeword due to an obscured

pattern or steep gradient. This is particularly dangerous in this work because the entire list
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of codewords is not searched for at every cycle and an incorrect decoding could propagate

forward until that point has motion again. We limit the damage of this by introducing

Radius Outlier Removal to the system which is a method of identifying outliers based on

their proximity to other points. It uses fixed radius k-nearest neighbor search in order to find

the number of points within a given radius and if the count doesn’t pass a given threshold, it

marks that point for removal from the point cloud. Though our implementation is utilized

in three dimensions, Figure 4.7 showcases the method in two dimensions for some radius

and a count threshold of 3 by showing a point that would be eliminated (Figure 4.8a) and

one that would be kept (Figure 4.8b).

(a) Point Removed (b) Point Retained

Figure 4.8: Examples of Radius Outlier Removal

The types of misidentification that we’d like to avoid are ones where the distance between

the correct code and the incorrect one is great which leads to the triangulated point being

far off from the truth. Because this method works by finding tight groupings of points, it

works well for these types of errors. Errors where we are only off by one codeword are less

of a concern since it still places the triangulated point into a region close to the truth which

this method would be unable to detect.
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In this work, the radius is 5 mm and the count threshold is 12. This search includes all

previously identified points, not just new ones identified in the last cycle as minorly moving

parts of the subject alone may not be enough to pass the threshold requirement but those

points in tandem with the rest of the subject should. If a point is detected as an outlier,

it is not only removed from the cloud, but its previously computed 3D point is added back

to the point cloud and we mark it for forced search in the next Codeword Identification

phase. If force search is marked, the point will ignore the motion mask and search its entire

epipolar line for a match. This stops us from potentially missing the valid location of the

codeword due to the location only existing in the previous cycle’s motion mask.

We utilize the Point Cloud Library (PCL) [49] and the Fast Library for Approximate

Nearest Neighbors (FLANN) [50] in the CPU implementation which utilizes k-d trees to

assist in the search. The specifics of the algorithms used in FLANN are detailed in [51].

While we were unable complete our GPU implementation of fixed-radius nearest neighbor

search (and thus had to use the FLANN implementation in practice), we would have based

it off of the works of [2, 52] which breaks the scanning space up into a 3D spatial grid and

bins each point into one of them (with a limited number of points per cell (visualized in

Figure 4.9 where gray boxes are the search space). This approach was initially designed for

fluid particle physics simulations, but works just as well for radius outlier removal. When

searching for nearest neighbor, each point only needs to search its adjacent cells. While this

approach takes more memory than a k − d tree, its consistent memory layout lends itself

well to parallel architectures like a GPU.
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Figure 4.9: Fixed-radius nearest neighbor search in two dimensions from [2]
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CHAPTER 5. EVALUATION METHODOLOGY

This system will be evaluated with the Visual Studio Profiler for the CPU execution time

and the CUDA Nsight Profiler for GPU execution time. The amount of time spent running

each stage of the algorithm on each platform and copying data between the CPU and GPU

will be measured. Due to the lack of a physical setup, the input videos were generated using

a Python script and the 3D modelling software Blender. The camera was placed at (0, 0, 0)

with a rotation of (π/2, 0, 0) which faces forward. The projector was placed just to the

right of at (0.1, 0, 0) which is 10 centimeters to the right of the camera and angled inwards

towards the subject with a rotation of (π/2, 0, π/18). The subject was placed in view of

both the camera and projector and given a wooden texture. The background surface was a

plane positioned perpendicular and 75 centimeters away from the camera. It was assigned

a concrete texture. The two subjects scanned were the Stanford Bunny (Figure 5.1a) and

a simple knot that comes with the MeshLab software (Figure 5.1b).

(a) The Stanford Bunny [53] (b) The Knot [54]

Figure 5.1: Two models used for evaluation
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The subjects were recorded while rotating about all three axes (clockwise and counter-

clockwise) and translating across all three axes (forwards and backwards) to determine how

this methodology stood up to different types of movement. This provided 24 different input

videos being created for testing. Each video is 5 seconds long with 60 frames per second.

The videos were rendered in the AVI file format with full 8-bit RGB color.

All evaluation was done on a computer with the specifications in Table 5.1. The relevant

software library versions that were used are listed in Table 5.2.

Table 5.1: Computer Specifications

Component Product

Operating System Windows 10 Pro, Build 16299

CPU Intel i7-8700K

RAM 16 GB DDR4-3000

GPU Nvidia GTX 1070

Table 5.2: Computer Specifications

Software Version

CUDA Toolkit 7.5

OpenCV 3.1.0

PCL 1.8.0

VTK 7.0.0

FLANN 1.9.1
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CHAPTER 6. RESULTS

This section will describe the accuracy and speed of our structured light system. The

speed-ups reported in this chapter are specific to the input videos described in Chapter 5;

real-world speed-ups will depend on the amount of motion in those input videos. For our

evaluated videos, Figure 6.1 shows the execution time of all stages of the algorithm except

for radius outlier removal on a single CPU core, twelve CPU cores, and a GPU. Radius

outlier removal was not included in these plots as we could not get FLANN’s multithreaded

functionality to work when running k-nearest neighbor search (it’s consistently around 150

ms/cycle) and it is easier to show improvements of parallelizing the algorithm.

Table 6.1 contains the full results of the system performance on a single CPU core.

We can see that by adding motion analysis to structured light surface reconstruction with

outlier removal, performance increases by 21.2%. When motion analysis is not used, outlier

removal is less important due to the lack of error propagation. Without taking outlier

removal into account, the system performance increases by 52.2%. RGB to HSV conversion

can occur in parallel with the motion detection, so the motion mask is not used to accelerate

that stage. We see quite significant accelerations in the Color Identification stage due to it

being a per pixel operation that can be directly affected by reducing the number of pixels

to do work on via the motion mask. We also see those gains propagate into the Codeword

Identification and Triangulation stages by limiting the amount of codewords we need to

search for and, if found, triangulate.

Table 6.2 contains the full results of the system performance on all 12 CPU cores. As

with the single core case, we see generous improvements when motion analysis is used to
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Figure 6.1: Average Execution Time per Cycle (No Outlier Removal)

reduce workload in the early steps but much of the performance gains are lost due to the

slow outlier removal algorithm. While a working multithreaded radius outlier removal stage

would improve the overall speed of the algorithm as the parallelization factor increases, this

stage, like the RGB to HSV conversion stage, does not benefit from motion analysis as all

points with known locations must be run through the filter. Even in cases where no motion

is present and the early stages would have close to zero execution time, the filter must still

process all points leading to diminishing returns of motion analysis. In this implementation,

the system speeds up by 14.0% without outlier removal included.

Finally, Table 6.3 contains the full results of the system performance running on a GPU.

The GPU implementation incurs two extra stages that the CPU implementation does not
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Table 6.1: Breakdown of Figure 6.1 by Stage for CPU (1 core)

Stage w/o Motion Analysis w/ Motion Analysis

RGB to HSV 14.0 ms 14.0 ms

Motion Analysis - 41.9 ms

Color Identification 13.3 ms 3.8 ms

Codeword Identification 119.8 ms 40.6 ms

Triangulation 6.9 ms 0.9 ms

Radius Outlier Removal 147.3 ms 147.4 ms

Total w/o Outlier Removal 154.0 ms 101.2 ms

Total w/ Outlier Removal 301.3 ms 248.6 ms

Table 6.2: Breakdown of Figure 6.1 by Stage for CPU (12 cores)

Stage w/o Motion Analysis w/ Motion Analysis

RGB to HSV 6.0 ms 6.0 ms

Motion Analysis - 11.4 ms

Color Identification 1.9 ms 0.5 ms

Codeword Identification 18.5 ms 10.5 ms

Triangulation 7.0 ms 0.9 ms

Radius Outlier Removal 150.6 ms 150.6 ms

Total w/o Outlier Removal 33.4 ms 29.3 ms

Total w/ Outlier Removal 184.0 ms 179.9 ms

have: the transferring of inputs to the GPU and the transfer of resulting point cloud back to

the CPU. The GTX 1070 averaged 4.35 GB/s in our data transfer benchmark and with sixty

1920x1440 24-bit color frames to transfer to the unit each second, we calculated a transfer

time of 3.8 ms per cycle. Additionally, with 131355 potential point cloud points in our view

and each point holding three floats for X, Y, and Z locations, 3 uint8s for point color, we

calculated a transfer time of approximately 0.5 ms per cycle. We add this time to the total

execution time of the algorithm, though the two copy engines (the GTX 1070 has one from

host to device and one from device to host) can operate asynchronously from the CUDA

kernels running so this time accumulation is not actually seen. We can see that despite the

GPU implementation being the fastest of all of our tests and stages benefiting with motion
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analysis experience a reduction in execution time, including motion analysis actually slows

down the system by 53.1% without outlier removal and 37.5% with outlier removal. The

time penalty incurred with the background subtraction and the morphological dilation is

much greater than the time saved by only computing the later stages on the moving sections.

Table 6.3: Breakdown of Figure 6.1 by Stage for GPU

Stage w/o Motion Analysis w/ Motion Analysis

Frame Transfer x2 3.8 ms 3.8 ms

RGB to HSV 1.4 ms 1.4 ms

Motion Analysis - 6.3 ms

Color Identification 0.5 ms 0.2 ms

Codeword Identification 3.3 ms 2.3 ms

Triangulation 0.2 ms 0.1 ms

Radius Outlier Removal 4.0 ms1 4.0 ms1

Point Cloud Transfer 0.5 ms 0.5 ms

Total w/o Outlier Removal 9.6 ms 14.7 ms

Total w/ Outlier Removal 13.6 ms 18.7 ms

1 Conservative estimate based off of data available in [2].

We estimated the performance a GPU implementation of Radius Outlier Removal by

looking at the performance of fluid simulation in [2]. Computing forces on 131,072 particles

(very close to our number of points and a similar operation) took less than 2 ms to run on a

GTX Titan (which has 2688 CUDA cores clocked at 837 MHz). Assuming similar compute

capacities, converting that performance to a GTX 1070 (with 1920 CUDA cores clocked at

1506 MHz) gives us an execution time of 2.5 ms, or conservatively 4.0 ms.

Due to the focus on motion of this work, we also looked into how different types of motion

affected the system. We analyze two common types of motion that would be seen by a 3D

scanning system: rotational and translational, both of which are common in modern video

communication systems. We restrict ourselves to rigid objects by not considering scaling

movements, thought they should behave similarly to translational movements. We are

primarily interested in whether different types of movement with the same subject affects
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the execution time. Figure 6.2 shows the results of this experiment where the X+ direction

is pointing to the right of the camera view, the Y+ direction is pointing away from the

camera, and the Z+ direction is pointing to the top of the camera view. After normalizing

all of our execution times across our input videos against the mean execution time of their

target architecture and classifying by motion, we saw no substantial difference in execution

time between our classifications. All mean execution times of each classification were within

1.1% of the total mean execution time. Even in the case of the Translate Y classification

where the subject will either start far away from the camera and get closer or vice versa,

the average amount of motion detected across the video was similar to the other videos to

prevent its deviation (though execution time was less consistent from frame to frame).
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Figure 6.2: Factor of Mean Execution Time by Motion Classification
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This system still contains several visual deficiencies in the resulting point that need to

be addressed, though these limitations are the result of the encoding sequence chosen, not

necessarily due to the addition of motion analysis. However, the use of motion analysis and

point propagation can have consequences for incorrectly computed points. We will discuss

a few of the limitations in our system in this section and suggest solutions in Chapter 7.

In Figure 6.3, we can see that in some locations there are holes present in our reconstruc-

tion. While in the process of turning the point cloud into a mesh with vertex triangulation,

these holes would likely be un-noticable, it is still a flaw in the system caused by failing

to successfully decode the pattern at that location through the pattern being obscured or

identifying the pattern as another codeword. While these flaws can be propagated forward

through time due to the usage of motion analysis if they are not properly detected, they can

also be prevented by locking them in place after correct detection if motion is not detected

in that location which is not the case in the traditional structured light system.

Figure 6.3: Point Cloud Holes

In Figure 6.4, you will notice a few artifacts on the edge of the subject’s point cloud.

One cause is that near the edge of the subject in the pattern-projected frames, shadows can

start to interfere with the proper color identification and thus interfere with the codeword

identification. Additionally, if a codeword that would be properly located at the edge of
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the subject is mis-identified earlier in its epipolar line, then it will not appear in its proper

place and we observe the other edge codewords that were properly decoded as artifacts. As

with the previous example, it is possible for these errors to be propagated forward if there

is no motion in that location in the near future to force the system to compute its position,

though in practice they are often caught as outliers on the next cycle through the algorithm

and are not left in the point cloud.

Figure 6.4: Edge Artifacts

In Figure 6.5, one of the Stanford Bunny’s ears is obscuring the other one from being

detected and the background plane is instead shown in that space. This is a limitation

of using a structured light system with only one camera and one projector: since both

components must be spatially separated in order to triangulate a point, there may be some

objects like the back ear that are within the view of one component (i.e. the camera) but

not the other (i.e. the projector). There is no clever encoding method that only uses one

camera and one projector that can fix this phenomena, though the effects can be minimized

by decreasing the distance between the two at the cost of reconstruction accuracy.

While outlier removal isn’t strictly required when motion analysis is used, leaving it

out can significantly affect the resulting point cloud and the effects only grow as time goes

forward. Figure 6.6 is the result of rotating the Stanford Bunny about its Y axis with
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Figure 6.5: Shadow Occlusion

motion analysis turned on but keeping outlier removal off. While the subject is still mostly

in tact, the background plane has several pieces missing due to the floating foreground

points that were never removed from the point cloud once they were isolated from the main

subject.

Figures 6.7 show the final point clouds that our system generated at the final frame

of the videos where the subject rotated clockwise about the X axis. The points in these

clouds are color-coded by their distance from the camera with blue being the farthest (the

background plane), green being in the middle, and red being the closest. These point clouds

were saved as PLY files and imported into MeshLab [54] in order to generate a 3D mesh.

We used MeshLab to compute normal vectors for each of the vertices and then used the

Marching Cubes (APSS) algorithm to reconstruct the surface. The filter scale was set to

3, accuracy was set to 0.01, max iterations was set to 15, sphereical parameter was set to

0, accurate normals was turned on, grid resolution was set to 150, and edge smoothing was

turned off. The resulting meshes can be seen in Figure 6.8. Visually, these reconstructed

meshes are close enough to the originals to be distinguishable. It is evident that sub-pixel

accuracy is needed to gain further resolution into our subjects (such as the fur details on

the Stanford bunny or the distinctly flat faces of the MeshLab Knot). Furthermore, the
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Figure 6.6: Resulting Point Cloud without Radius Outlier Removal

edge artifacts in Figure 6.4 have significantly affected the edges of the reconstructed meshes:

what should have been a smooth termination of the model has turned into a set of jagged

edges.
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(a) Stanford Bunny Point Cloud
(b) Knot Point Cloud

Figure 6.7: Computed point clouds

(a) Stanford Bunny Reconstructed (b) Knot Reconstructed

Figure 6.8: Models reconstructed from their point cloud
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CHAPTER 7. FUTURE WORK AND CONCLUSION

There is much more work to be done to make it a reliable 3D scanning method. First

and foremost, a physical setup is needed to scan real world objects, though because this

system already implements camera calibration, it should be relatively easy.

Another addition that can be made is to increase the density of the points that we

search for. By searching for the position of the black lines in between the colored lines in

the projected pattern, we can double the horizontal scanning density without modifying the

pattern at all.

There are several ways to increase the accuracy of the system. Firstly, we can map the

intensity of a color band to a gaussian function to find a subpixel center to the band instead

of finding the first location of the color to calculate a more accurate depth of the pixel.

Secondly, we could choose a pattern that has a higher minimum Hamming distance than the

current one to allow for not only error detection, but also error correction. Thirdly, we could

use the white light-illuminated frames to normalize the patterned line frames by knowing

what colors we are projecting onto. Fourthly, we could introduce multiple projectors and

cameras similar to [42] to remove shadow-based occlusions in order to better scan the

normally obscured portions of the subject. Finally, we could increase the robustness of the

system by adding horizontal lines or switching to a different encoding pattern altogether

like one based on M-arrays.

The point cloud generated by this system is currently uncolorized, but since we are also

collecting a white light-illuminated frame, we could colorize the point cloud by sampling

the points that we detect a correspondence at. If we ran Delaunay triangulation on the
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point cloud to turn it into a 3D mesh, we could also use that frame as a texture to overlay

onto the mesh. By replacing our current encoding method to a binary M-array encoding,

we can replace the rapid projection switching entirely and instead project infrared symbols

onto the subject for decoding via an infrared camera and then use an RGB camera to run

the motion detection and point cloud colorizing.

Some errors are introduced into the system with the addition of the motion-only re-

stricted pattern decoding. If a codeword is misidentified, we currently add its epipolar line

back to the search space, though if it isn’t found on the next cycle, it is removed. In the fu-

ture, a smarter system for determining when to add these points back into the search space

and when to keep them out would be helpful in increasing detection accuracy and making

sure we don’t lose points that we should be searching for. Additionally, sometimes detection

errors get past the outlier removal and continue to propagate. By not stopping codeword

identification when the first match is found and instead searching for more matches, it is

possible to find multiple candidates for the point and check to see which one fits into the

model better using fixed-radius k-nearest neighbor search and discarding the others. This

would also remove the need to add a codeword’s epipolar line back to the search space

in the next frame. To further stop error propagation, it may be necessary to have a reset

frame periodically that rescans the entire frame to remove any propagated errors. It may be

worthwhile to investigate how lossy video encoders such as H.264 handle this propagation.

Other miscellaneous additions that could be made in the future are improving upon

the CUDA implementation of each stage to optimize it for the architecture and finding

a way to speed up slower stages such as motion analysis to make it more worthwhile on

massively-parallel architectures. While there is an inter-stage dependency of the results of

outlier removal being necessary for codeword identification, it may be helpful to pipeline

some of the operations to take better advantage of the CUDA architecture.

In this thesis, we have demonstrated a method for reducing the amount of work needed

to be done in a structured light surface reconstruction system propagating forward points
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that have not moved. By alternating projecting a de Bruijn sequence-coded pattern and

white light, we can encode depth information while also providing an input sequence that

can be used to detect motion. The results captured with this method are visually similar to

other methods that use de Bruijn sequence encodings with colored lines that don’t propagate

points forward through time because they are ultimately prone to the same errors that exist

in our method. Our method also operates at a similar speed regardless of the types of motion

(spinning, translating, etc.) that is present on the screen. Without taking outlier removal

into consideration, in a single-threaded CPU implementation, we see speed-ups of 52.2%.

In a CPU implementation with twelve threads, we see speed-ups of only 14.0%. Finally, in

a CUDA GPU implementation, we actually see a slowdown of 53.1% due to the non-trivial

amount of time spent computing motion. Since we saw the best performance on our single-

threaded CPU implementation and the worst performance on our GPU implementation,

we conclude that our method of surface reconstruction is useful on computation systems

without access to parallelization hardware that only have a few threads to spare (if multiple

at all) to the task.
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